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Cold Boot Attacks

@ Cold boot attacks

» Halderman et al. [USENIX '08] (http://citp.princeton.edu/memory)

Table: Error rate of cold boot attacks (example)

’ Temperature H Seconds w/o power ‘ Error rate ‘
Operating Temperature 60 41 %
300 50 %
—50°C 60 no errors
300 0.000095 %



http://citp.princeton.edu/memory

Previous Works: RSA-CRT Cryptosystem

o RSA-CRT
» C9 (mod N)
= C% (mod p), C% (mod q), and Chinese remainder theorem
where d, = d mod (p — 1),dy = d mod (g — 1)

» Private key: (p, q,d, dp, dg)

@ Previous Results
» Using equations in variables N, e, p, q,d, d,, d,

Table: Previous Results - Recovering Private Keys

’ Scenario ‘ Reference

Less than 0.73 fraction of p,q, d, dp, dg is unknown | Heninger-Shacham (Crypto '09)

Error rate of p, q,d, dp, dq is less than 0.237 Henecka-May-Meurer (Crypto '10)




Problem Definition

Definition

Let G be a finite cyclic group of order g, generated by g. Given an
erroneous value x” € Zg with error rate ¢, and y = g* € G, recover the
correct value x .

@ Applications

» DL-based Cryptosystem: (pk,sk) = (g*, x)
» Standard RSA Cryptosystem: (ct, msg) = (C, C?) where sk = d



Previous Works: Splitting System

Definition (Splitting System)

Let n and t be even integers with 0 < t < n. An (n, t)-splitting system is a pair
(X, B) that satisfies the following properties:

© |X|=nand B is a set of J-subsets of X called blocks.

@ For every Y C X such that |Y| = t, there exists a block B; € B such that
|B; n Yl = %

An (n, t)-splitting system with N blocks is denoted by (N; n, t)-splitting system.

Lemma (Coppersmith)

For all even integers n and t with 0 < t < n, there exists an (5; n, t)-splitting
system for Z,,.
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Applications of Splitting System

@ Applications

» Low Hamming Weight Exponent (LWHE) DLP

» Recovering the private key from an unidirectional erroneous key which
has missing bits [Forque et al., CHES '06]

@ ldea: when x = 101011100101,

» LHWE DLP: x’ = 000000000000 = x =7
» Unidirectional Error: x’ =-0-0---00-0- = x =?
» Bidirectional Error: x’ = 100010110101 = x =?
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Example |

@ Setup
» G = (2) C Z5y3q of order 1019,
» pk:y =g"=1571 (sk: x =1110101101, = 941),
» x’ 11010110111, = x = ?

e Naive Method (Exhaustive Search):
Choose t bits from n bits and change corresponding bits (t: the
number of error bits)

1010110111

!
1010110111

N
1110101101

+
01110101101 — 1571 mod 2039

10 10 10 10 10
Complexity: <0>+<1>+<2>+<3>+<4> = 386
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Example Il

@ Our Idea: From t = 0 with sequentially increase,

» When t = 4,
x' = 1010110111
v N
U,,1 = 0010110000 U,» = 1000000111
{ 4
0010110000 1000000111
. { 4
Ui+ = 0110100000 U, «» = 1000001101
0110100000 __ 5416 »—1000001101 _ 5525
4 i
645 mod 2039 1737 mod 2039

645 = 1541 - 1737 mod 2039
= x = 0110100000 + 1000001101 = 1110101101

s () 20((5) () )+ () -
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Our Algorithm

Algorithm 1 Recovering private key from the erroneous key x’

INPUT: (g,y,x’,n,d)
OUTPUT: x such that y = g*
for t =1 to [nd| do
for i =0to |n/2] —1do
set By,j and By j to [i,i+ n/2), and [i + n/2,i),, respectively
set Ul,i and U21,'
while possible T3 ;'s do

set Ul’j

compute gY1J and store (Ul,j,guld') in the table Tab
end while
while possible T; ,'s do

set UQJ(

computeiygfuzvk

find ygiUZk among gUlJ's in Tab
if collision yg =g
return Ul,j* -‘rUg’k*
end if
end while
initialize the table Tab
end for

—Up jox Uy j=

occurs then

end for




Complexity of Basic Algorithm |

o Computation: n< )
2"\ [t/2]

o Storage: ([(Lnné/f/m)

Table: Complexity of exhaustive search, Algorithm 1 and unidirectional case (n = 160)

Upper bound of Complexity
error rate (§) Exhaustive search | Algorithm 1 | Uni-direction
003 924,60 519.98 91721
0.05 243.10 928.99 224.65
010 571.95 543.24 36.38
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Complexity of Basic Algorithm Il

Table: Complexity of exhaustive search, Algorithm 1 and unidirectional case in
RSA (n = 1024)

Upper bound of Complexity
error rate Exhaustive search l Algorithm 1 | Uni-direction
0.003 227.42 227.01 224.04
0.005 243.09 234.42 230.49
0.010 578.16 249.08 243.23




Applying to Countermeasures: Coron and Kocher's
Method |

e Coron and Kocher's Method [Crypto '96, CHES '99]
> X = X = x + rq where r is a n,-bit random integer
» CF=C*inG
> Applying our algorithm to Coron and Kocher's method

Table: Lower bound of n, to provide 289 complexity (n = 160)

’ Upper bound of error rate H 0.10 ‘ 0.15 ‘ 0.20 ‘ 0.25 ‘ 0.30 ‘
‘ Lower bound of n, H 155 ‘ 87 ‘ 45 ‘ 24 ‘ 10 ‘

Table: Lower bound of n, to provide 289 complexity in RSA (n = 1024)

’ Upper bound of error rate H 0.005 ‘ 0.008 ‘ 0.010 ‘ 0.015 ‘ 0.020 ‘
| Lowerboundofn, [ 1976 [ 1101 | 699 [ 243 | 26 |
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Countermeasures:Clavier and Joye's Method |

@ Clavier and Joye's Method [CHES '01]
> x = x; + xp where x; is an random integer, C* = C* - C*? in G

Algorithm 2 Recovering private key from the erroneous keys X1, %}

INPUT: (g, y, x{, XZ,, n, 8)
OUTPUT: x such that y = g*

for t; = 1to [nd] do
while possible T1's do
set x|

/ — /
compute g™1 and store (x{» 1) in the table Tab
end while
end for
for tp = 1to | né] do
while possible T,'s do

7
set x;

-
compute yg 2
7 v
find yg~ 2 among g*1's in the table Tab
if collision occurs then
/ /
l:eturn X+ X
end if
end while

end for
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Countermeasures:Clavier and Joye's Method I

Lnd] n Lnd] n
» Computation: 2 , Storage:
putior: 23 (7). srsse 3 (7)

Table: Recovering complexity on Clavier and Joye's method (n = 160)

Upper bound of Complexity
error rate Exhaustive search | Algorithm 2 l Uni-direction
0.03 249.30 225.69 221.95
0.05 > 280 244.10 237.05
0.10 > 280 272.95 260.51

Table: Recovering complexity on Clavier and Joye's method (n = 1024)

Upper bound of Complexity

Algorithm 2 | Uni-direction

error rate Exhaustive search
0.003 255.83 228.42 925.44
0.005 > 280 244.09 239.15
0.010 > 280 279.16 269.39




Conclusion

@ Provide the algorithm to recover the DL from an erroneous exponent
@ Apply to the DL-based cryptosystem and the standard RSA

@ Consider breaking countermeasures using our algorithm
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