Correcting Errors in Private Keys Obtained from Cold Boot Attacks

Hyung Tae Lee, HongTae Kim, Yoo-Jin Baek, and Jung Hee Cheon

ISaC & Department of Mathmathical Sciences, SNU

2011. 11. 30.

Contents

- Cold boot attacks
- Problem definition
- Our algorithm
- Breaking Countermeasures
- Conclusion

Cold Boot Attacks

- Cold boot attacks
 - ► Halderman et al. [USENIX '08] (http://citp.princeton.edu/memory)

Table: Error rate of cold boot attacks (example)

Temperature	Seconds w/o power	Error rate
Operating Temperature	60	41 %
	300	50 %
−50°C	60	no errors
	300	0.000095 %

Previous Works: RSA-CRT Cryptosystem

- RSA-CRT
 - ► $C^d \pmod{N}$ ⇒ $C^{d_p} \pmod{p}$, $C^{d_q} \pmod{q}$, and Chinese remainder theorem where $d_p \equiv d \pmod{(p-1)}$, $d_q \equiv d \pmod{(q-1)}$
 - ▶ Private key: (p, q, d, d_p, d_q)
- Previous Results
 - ▶ Using equations in variables N, e, p, q, d, d_p, d_q

Table: Previous Results - Recovering Private Keys

Scenario	Reference
Less than 0.73 fraction of p, q, d, d_p, d_q is unknown	Heninger-Shacham (Crypto '09)
Error rate of p, q, d, d_p, d_q is less than 0.237	Henecka-May-Meurer (Crypto '10)

Problem Definition

Definition

Let $\mathbb G$ be a finite cyclic group of order q, generated by g. Given an erroneous value $x'\in\mathbb Z_q$ with error rate δ , and $y=g^x\in\mathbb G$, recover the correct value x.

- Applications
 - ▶ DL-based Cryptosystem: $(pk, sk) = (g^x, x)$
 - ▶ Standard RSA Cryptosystem: $(ct, msg) = (C, C^d)$ where sk = d

Previous Works: Splitting System

Definition (Splitting System)

Let n and t be even integers with 0 < t < n. An (n, t)-splitting system is a pair (X, B) that satisfies the following properties:

- **1** |X| = n and B is a set of $\frac{n}{2}$ -subsets of X called *blocks*.
- ② For every $Y \subseteq X$ such that |Y| = t, there exists a block $B_i \in B$ such that $|B_i \cap Y| = \frac{t}{2}$.

An (n, t)-splitting system with N blocks is denoted by (N; n, t)-splitting system.

Lemma (Coppersmith)

For all even integers n and t with 0 < t < n, there exists an $(\frac{n}{2}; n, t)$ -splitting system for \mathbb{Z}_n .

Applications of Splitting System

- Applications
 - Low Hamming Weight Exponent (LWHE) DLP
 - ▶ Recovering the private key from an unidirectional erroneous key which has missing bits [Forque *et al.*, CHES '06]
- Idea: when x = 101011100101,
 - ► LHWE DLP: $x' = 0000000000000 \Rightarrow x = ?$
 - ▶ Unidirectional Error: $x' = \cdot 0 \cdot 0 \cdot \cdot \cdot \cdot 00 \cdot 0 \cdot \Rightarrow x = ?$
 - ▶ Bidirectional Error: $x' = 100010110101 \Rightarrow x = ?$

Example I

- Setup
 - $\mathbb{G} = \langle 2 \rangle \subset \mathbb{Z}^*_{2039}$ of order 1019,
 - ightharpoonup pk : $y = g^x = 1571$ (sk : $x = 1110101101_2 = 941$),
 - $x' : 1010110111_2 \Rightarrow x = ?$
- Naive Method (Exhaustive Search):
 Choose t bits from n bits and change corresponding bits (t: the number of error bits)

$$1010110111 \\ \downarrow \\ 1010110111 \\ \downarrow \\ 1110101101 \\ \downarrow \\ 2^{1110101101} \equiv 1571 \bmod 2039$$

Complexity:
$$\binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \binom{10}{4} = 386$$

Example II

- Our Idea: From t = 0 with sequentially increase,
 - \blacktriangleright When t=4,

$$x' = 1010110111$$

$$U_{1,1} = 0010110000$$

$$U_{1,2} = 1000000111$$

$$0010110000$$

$$1000000111$$

$$\overline{U}_{1,j^*} = 0110100000$$

$$\overline{U}_{2,k^*} = 1000001101$$

$$2^{0110100000} = 2^{416}$$

$$2^{-1000001101} = 2^{-525}$$

$$4045 \text{ mod } 2039$$

$$645 \equiv 1541 \cdot 1737 \text{ mod } 2039$$

$$\Rightarrow x = 0110100000 + 1000001101 = 1110101101$$

$$Complexity: \binom{5}{0} + 10 \left(\binom{5}{1} + \binom{5}{1} + \binom{5}{2} + \binom{5}{2}\right) = 301$$

Our Algorithm

Algorithm 1 Recovering private key from the erroneous key x'

```
INPUT: (g, v, x', n, \delta)
OUTPUT: x such that y = g^x
for t = 1 to |n\delta| do
    for i = 0 to |n/2| - 1 do
        set B_{1,i} and B_{2,i} to [i, i+n/2)_n and [i+n/2, i)_n, respectively
        set U_{1,i} and U_{2,i}
        while possible T_{1,i}'s do
             set U_{1,i}
             compute g^{\overline{U}_{1,j}} and store (\overline{U}_{1,i}, g^{\overline{U}_{1,j}}) in the table Tab
        end while
        while possible T_{2,k}'s do
             set \overline{U}_{2,k}
             compute yg^{-\overline{U}_{2,k}}
             find yg^{-\overline{U}_{2,k}} among g^{\overline{U}_{1,j}}'s in Tab
             if collision yg^{-\overline{U}_{2,k^*}} = g^{\overline{U}_{1,j^*}} occurs then
                  return \overline{U}_{1,i^*} + \overline{U}_{2,k^*}
             end if
        end while
         initialize the table Tab
    end for
```

Complexity of Basic Algorithm I

• Computation: $\sum_{t=1}^{\lfloor n\delta \rfloor} n \binom{n/2}{\lceil t/2 \rceil}$

• Storage: $\binom{n/2}{\lceil(\lfloor n\delta\rfloor/2)\rceil}$

Table: Complexity of exhaustive search, Algorithm 1 and unidirectional case (n = 160)

Upper bound of	Complexity		
error rate (δ)	Exhaustive search Algorithm 1 Uni-directi		
0.03	2 ^{24.69}	2 ^{19.98}	2 ^{17.21}
0.05	2 ^{43.10}	2 ^{28.99}	2 ^{24.65}
0.10	2 ^{71.95}	2 ^{43.24}	2 ^{36.38}

Complexity of Basic Algorithm II

Table: Complexity of exhaustive search, Algorithm 1 and unidirectional case in RSA (n = 1024)

Upper bound of	Complexity		
error rate	Exhaustive search Algorithm 1 Uni-directi		
0.003	2 ^{27.42}	2 ^{27.01}	2 ^{24.04}
0.005	2 ^{43.09}	2 ^{34.42}	2 ^{30.49}
0.010	2 ^{78.16}	2 ^{49.08}	2 ^{43.23}

Applying to Countermeasures: Coron and Kocher's Method I

- Coron and Kocher's Method [Crypto '96, CHES '99]
 - $x \Rightarrow \tilde{x} = x + rq$ where r is a n_r -bit random integer
 - $C^{\tilde{x}} \equiv C^{x}$ in \mathbb{G}
 - Applying our algorithm to Coron and Kocher's method

Table: Lower bound of n_r to provide 2^{80} complexity (n = 160)

Upper bound of error rate	0.10	0.15	0.20	0.25	0.30
Lower bound of n_r	155	87	45	24	10

Table: Lower bound of n_r to provide 2^{80} complexity in RSA (n = 1024)

Upper bound of error rate	0.005	0.008	0.010	0.015	0.020
Lower bound of n _r	1976	1101	699	243	26

Countermeasures: Clavier and Joye's Method I

- Clavier and Joye's Method [CHES '01]
 - $x = x_1 + x_2$ where x_1 is an random integer, $C^x \equiv C^{x_1} \cdot C^{x_2}$ in $\mathbb G$

Algorithm 2 Recovering private key from the erroneous keys x'_1, x'_2

```
INPUT: (g, y, x'_1, x'_2, n, \delta)
OUTPUT: x such that y = g^x
for t_1 = 1 to |n\delta| do
      while possible T_1's do
            set x_1'
            compute g^{\overline{x_1'}} and store (\overline{x_1'}, g^{\overline{x_1'}}) in the table Tab
end for
for t_2 = 1 to |n\delta| do
      while possible T2's do
            set \overline{x_2'}
            compute yg^{-x_2'}
            find yg^{-\overline{x_2'}} among g^{\overline{x_1'}}'s in the table Tab
            if collision occurs then
                   return \overline{x_1'} + \overline{x_2'}
            end if
      end while
```

Countermeasures: Clavier and Joye's Method II

► Computation:
$$2\sum_{t_1=1}^{\lfloor n\delta\rfloor} \binom{n}{t_1}$$
, Storage: $\sum_{t_1=1}^{\lfloor n\delta\rfloor} \binom{n}{t_1}$

Table: Recovering complexity on Clavier and Joye's method (n = 160)

Upper bound of	Complexity		
error rate	Exhaustive search Algorithm 2 Uni-direction		
0.03	2 ^{49.30}	2 ^{25.69}	$2^{21.95}$
0.05	> 280	2 ^{44.10}	2 ^{37.05}
0.10	> 2 ⁸⁰	2 ^{72.95}	2 ^{60.51}

Table: Recovering complexity on Clavier and Joye's method (n = 1024)

Upper bound of	Complexity			
error rate	Exhaustive search Algorithm 2 Uni-directio			
0.003	2 ^{55.83}	2 ^{28.42}	2 ^{25.44}	
0.005	> 280	2 ^{44.09}	2 ^{39.15}	
0.010	> 280	2 ^{79.16}	2 ^{69.39}	

Conclusion

- Provide the algorithm to recover the DL from an erroneous exponent
- Apply to the DL-based cryptosystem and the standard RSA
- Consider breaking countermeasures using our algorithm

Conclusion

- Provide the algorithm to recover the DL from an erroneous exponent
- Apply to the DL-based cryptosystem and the standard RSA
- Consider breaking countermeasures using our algorithm

***** Thank you!! *****